prev home

Program

Date
Place
  • Room H (Room Hall 1, 1F)
  • P2. Poster Session II
  • August 21, 2015 (Friday)
  • 14:00 ~ 15:30
  • [P2-47]
  • 14:00 ~ 15:30
  • Title:Development of Highly Transparent Pd-Coated Ag Nanowire Electrode via Controlled Galvanic Displacement Reaction
  • Ali Canlier and Umit Volkan Ucak (Abdullah Gul Univ., Turkey )

  • Abstract: Ag nanowire transparent electrode has excellent transmittance (90%) and sheet resistance (20 Ohm/sq), yet there are slight drawbacks such as optical haze and chemical instability against aerial oxidation. Chemical stability of Ag nanowires needs to be improved in order for it to be suitable for electrode applications. In our recent article, we demonstrated that coating Ag nanowires with a thin layer of Au through galvanic exchange reactions enhances the chemical stability of Ag nanowire films highly and also helps to obtain lower haze. In this study, coating of a thin Pd layer has been applied successfully onto the surface of Ag nanowires. A mild Pd complex oxidant [Pd(en)2](NO3)2 was prepared in order to oxidize Ag atoms partially on the surface via galvanic displacement. The mild galvanic exchange allowed for a thin layer (1-2 nm) of Pd coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 12.5 ¥ìm and 59 nm, respectively. The Pd-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on flexible polycarbonate substrates. It has been revealed that average total transmittance remain around 95% within visible spectrum region (400-800 nm) whereas sheet resistance rises up to 175 Ohm/sq. To the best of our knowledge, for the first time in the literature, Pd coating was employed on Ag nanowires in order to design transparent electrodes for high transparency and strong chemical resistivity against nanowire oxidation. Very thin layer of Pd costs low, though this may render an excellent catalyst for applications such as fuel cell and organic synthesis.

  • PDF Download