Inorganic-Based Heterogeneously Integrated Flexible Transistors and Sensors

Kuniharu Takei

Dept. of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan Tel.:81-72-254-9497, E-mail: takei@pe.osakafu-u.ac.jp

Mechanically flexible and stretchable devices have attracted much attention for a next class of electronics such as flexible photovoltaics, flexible displays, and wearable electronics. In this talk, integrated transistors and sensors on a flexible substrate are demonstrated using especially inorganic nanomaterials to form the active components.

For a flexible thin film transistor (TFT) application, carbon nanotube network film for p-type TFTs and amorphous InGaZnO film for n-type TFTs were integrated to fabricate a complementary metal-oxide-semiconductor (CMOS) inverter circuit on a flexible substrate. The performance in terms of voltage gain and low power consumption is better than or comparable to other previous reports^(1, 2). Furthermore, temperature sensor was also integrated with the CMOS circuits to show the possibility of flexible CMOS/Sensor integration for the future practical applications.

Furthermore, different types of mechanical sensors that can be used for a variety of device applications such as a human interactive device, a robotics, and a wearable devices as examples are introduced⁽³⁻⁶⁾. For these demonstrations, printing methods such as a screen printing was developed to form temperature and strain sensors for low-cost, macroscale, flexible devices.

This talk mainly focuses on the TFTs and sensors on a flexible substrate. However, the technique should be also applied to macroscale flexible photovoltaics and flexible display components since high performance and airstable semiconductor materials are integrated.

Acknowledgment

This work is partially supported by JSPS KAKENHI Grant (#26630164 & #26709026) and the Mazda Foundation.

References

1. H. Chen, Y. Cao, J. Zhang, C. Zhou, Nature communications 5, 4097 (2014).

- 2. T.-C. Huang et al., IEEE Trans. Electron Devices 58, 141-150 (2011).
- 3. K. Takei, W. Honda, S. Harada, T. Arie, S. Akita, Advanced healthcare materials 4, 487-500 (2015).

4. K. Kanao et al., RSC Adv. 5, 30170-30174 (2015).

- 5. S. Harada et al., ACS Nano 8, 12851-12857 (2014).
- 6. W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Wearable, Advanced Functional Materials 24, 3299-3304 (2014).