The Effect of High Temperature Selenization by Sputtered CZTSSe thin films

Jun-Hyoung Sim¹, Kee-Jeong Yang^{1,2*} ¹Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Korea Tel.:82-53-785-3654, E-mail: aeneis@dgist.ac.kr ²Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Korea

An ideal thin-film solar cell absorber material should have a direct band gap around 1.3–1.5 eV with abundant, inexpensive, and nontoxic elements $Cu_2ZnSnS_xSe_{4-x}$ (CZTSSe) is one of the most promising thin-film solar cell materials [1-2]. CZTSSe thin film solar cell is a promising absorber materials from the perspective of the industrialization of mass-produced and it is eco-friendly. Meanwhile, it is reported that best efficiency of CZTSSe thin film solar cells is 11.1 % using a hydrazine [4]. But it is low compared with CIGS efficiency, 20.3 %. Therefore, the problems about a material of CZTSSe which are decomposition during annealing, control of secondary phase formation, and film/device characterization are needed to improve. High temperature annealing process can improve the absorber grain size, crystallinity and the electric characteristics. But high temperature annealing process above 600° C using the substrate with high transition point (above 700 °C). We examined the correlations between the annealing temperature and the device characteristics. As the annealing process temperature increases, the crystallinity of the absorber layer improved.

Acknowledgment

This work was supported by the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (13-BD-05)

References

- 1. Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei, Appl. Phys. Lett. 94, 041903 (2009)
- K. -J. Yang, J. -H. Sim, B. Jeon, D. -H. Son, D. -H. Kim, S. -J. Sung, D. -K. Hwang, S. Song, D. B. Khadka, J. H. Kim, J. -K. Kang, *Prog. Photovoltaics* DOI: 10.1002/pip.2500. (2015).
- 3. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, *Advanced Energy Materials* 3, 34-38 (2013).