Photovoltaic Performance of CZTSe Based Solar Cells Grown by Two-Step Process

Min-Su Kwon¹, Gedi Sreedevi¹ and Chan-Wook Jeon^{1*}

¹School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Korea.

^{*}Corresponding Author: Tel.: +82-53-810-2513, E-mail: cwjeon@ynu.ac.kr

Thin films of Cu₂ZnSnSe₄ (CZTSe) have drawn paramount attention to obtain the low-cost high-efficiency solar cells, owing to suitable direct band gap and large absorption coefficient for solar light absorption. In the present work, CZTSe films were grown by two-stage process which involved the deposition of stack CuZn/Sn/Cu precursors on Mo-coated glass substrates using DC-magnetron sputtering, followed by the selenization. Further, CZTSe based solar cell was fabricated with a configuration of Ag/Ni/Ga,Al:ZnO/i-ZnO/CdS/CZTSe/Mo/glass [inset in Fig. 1(a)] and its PV performance was systematically studied by illuminated current density-voltage (J -V) and quantum efficiency (OE) measurements. The X-ray diffraction (XRD) measurements indicated that assynthesized CZTSe films had an intensive (112) peak at 27.18° as the preferred orientation and exhibited tetragonal crystal structure with the average lattice parameters of a = b = 5.68 Å, and c = 11.32 Å [1]. The scanning electron microscope (SEM) images revealed that the films were uniform, pin-hole free and had regular grains with compact morphology. A thickness of 1600 nm for CZTSe film was found from cross-sectional SEM. The J - V characteristics of CZTSe cell under illumination with a light source of 100 mWcm⁻² at AM 1.5 conditions, are shown in Fig. 1(a). The cell showed characteristic parameters such as, an open circuit voltage (V_{oc}) of 0.409 V, short circuit current density (J_{sc}) of 29.94 mA cm⁻², a fill factor (FF) of 37.13, giving a conversion efficiency of 4.56 % [2]. In addition, a series resistance (R_s) of 1.22 Ω -cm and a shunt resistance (R_{sh}) of 1976 Ω cm were also evaluated. The external quantum efficiency (EQE) of CZTSe cell was measured as a function of wavelength of the incident light and is shown in Fig. 1(b). The QE curve showed an average efficiency of ~ 80 % and in the long wavelength region, the spectrum is restricted to the value of ~ 1200 nm corresponding to the absorption edge of CZTSe film. A band gap of 1.03 eV [3] for CZTSe film was calculated from the inset graph of Fig. 1(b). Hence the results suggested that two-stage approach for the fabrication of CZTSe can be adaptable for the low-cost high-efficiency solar cells.

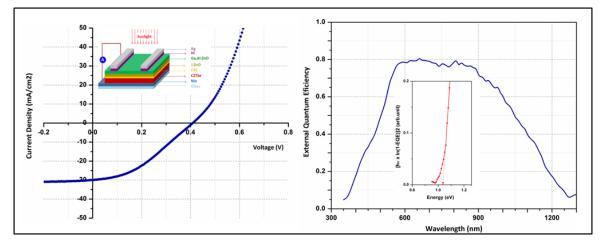


Fig. 1(a). Illuminated J – V (inset: cell structure) and (b) QE curves (inset: band gap graph)

Acknowledgment

This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF-2014H1C1A1066809).

References

- 1. Ping Fan, J. Alloys Comp., 625, 171 (2015).
- 2. Remigijus Juenas, Sol. Energy Mater. Sol. Cells, 101, 277 (2012).
- 3. M. Grossberg, Thin Solid Films 517(7), 2489 (2009).