Effect of Physical Treatment in Electrospun TiO_{2} Electrode for Dye-sensitized Solar Cell

Jeong-Hwa Kim, Shi-Joon Sung, and Dae-Kue Hwang*
Energy Research Division, DGIST, Daegu, 711-873 Korea
Tel.:82-53-785-3710, E-mail: dkhwang@dgist.ac.kr

One-dimensional (1D) nanostructured metal oxides have attracted much attention because of their unique properties and potential applications in electronics, photonics and other related areas. The electrospinning technique provide a simple, cost-effective approach for producing polymeric and inorganic nanofibers within a broad range of diameters, from tens of nanometres to a few micrometres according to the selection of the processing parameters. Physical treatment process is shown to enhance the adhesion of TiO_{2} nanofibers electrospun onto fluorine-doped tin oxide substrates for use in dye-sensitized solar cells. We have evaluated the cell efficiency for J-V characteristic curves by solar simulator. We have found that the best performance is achieved by hot-pressing at 14 MPa . Specifically, a current density of approximately $8.96 \mathrm{~mA} / \mathrm{cm}^{2}$, an opencircuit voltage of about 0.82 V , a fill factor close to 72%, and an energy conversion efficiency of approximately 5.33% were all achieved by this process.

Fig. 1. Current density-voltage characteristics of the DSSC

Acknowledgment

This work was supported by the DGIST R\&D Program of the Ministry of Science, ICT and Future planning of Korea (15-EN-03)

References

1. B. O'Regan and M. Grätzel, Nature 353, 737 (1991).
2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Valchopoulos, and M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).
3. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology 15, 1861 (2004).
4. P. Sudhagar, V. Gonzalez-Pedro, I. Mora-Serro, F. Fabregat-Santiago, J. Bisquert, and Y. S. Kang, J. Mater. Chem. 22, 14228 (2012).
