Improved Performance of CdSe/ZnS Quantum Dots Light-Emitting Devices by Atomic Surface Modulation

Jae-Sung Lee¹, Byoung-Ho Kang², Sang-Won Lee¹, Sai-Anand Gopalan¹, Ju-Seong Kim¹, Sae-Wan Kim¹, Seung-Hwan Cha¹, Jun-Woo Lee¹ and Shin-Won Kang^{1,†} ¹School of Electronics Engineering, College of IT Engineering, Kyungpook National University,

> Daegu 702-701, Republic of Korea [†]Tel.:82-53-950-6829, E-mail: <u>swkang@knu.ac.kr</u>

²Center for Functional Devices Fusion Platform, Kyungpook National University, Daegu 702-701, Republic of Korea

Quantum dot light-emitting diode (QLED) has received attention as the next generation display, replacing LCD (liquid crystal display) and OLED (organic light-emitting diode), because quantum dots(QDs) used for electroluminescence (EL) devices allow for both the tuning of the emission color by changing the QD size and enhanced color purity with a full width at half-maximum (FWHM), as narrow as 18 to 25 nm in the visible range. In addition, it is possible to simplify the solvent process using a spin casting or contact printing method; either of which allow for QLED to meet a broad region of standards set by the National Television System Committee (NTSC). Recently, many researchers reported on QLEDs manufactured using TiO₂ nanoparticles (NPs) as the electron transport layer (ETL) and confirmed the probability of a solution process. These reports showed well describe the energy transfer between metal-oxide NPs and cathode^{1,2}. However, the effect of interface between QDs and ZnO NPs by through cetyl trimethylammounium bromide (CTAB) treatment was not yet reported. The bromide (Br⁻) halide anion of CTAB could be provides not only reducing CdSe/ZnS QDs inter-particle spacing but also increasing carrier transport from ZnO NPs.

In this study, to evaluate effect on halide Br⁻ anion on CdSe/ZnS QDs as shortly inorganic ligands, we adopted CTAB and the halide anion of Br⁻ was coordinated on CdSe/ZnS QD film by nucleophilic nature. Then, we fabricated solution processible QLED by previous modified methods. Consequently, the QLED with CTAB (Br-QLED) was shown a maximum luminance of 36,000 cd/m² and achieved a maximum external current efficiency of 9.5 cd/A. The luminance and external current efficiency were enhanced by over 1.6 times compared to QLED without CTAB (Ref-QLED).

(a) Luminance and current density, and (b) current density-current efficienc

Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korean Government(MSIP) (No. NRF2014R1A2A1A11050377)

References

1. T. H. Kim et al., Nat. Photonics., 5, 176 (2011).

2. K. Qasim, J. Chen, Z. Li, W. Lei and J. Xa, J. RSC Adv., 3, 12104 (2013).