Localized Induction Heating for Low Melting Point Alloy and Epoxy Mixture Encapsulation of OLED

Chuyi Ye¹, and Cheol-Hee Moon¹ ¹Dept. of Display Engineering, Hoseo University, Asan city, Chungnam, 336-795 Korea Tel.:82-41-540-5238, E-mail: chmoon@hoseo.edu

OLED is a potential next generation display technology, which has advantages of light weight, ultra-thin thickness, wide visual angle and quick response. But the organic light-emitting material is sensitive to t he oxygen and water vapor[1], the encapsulation requires water vapor transmission rate(WVTR) and oxyg en transmission rate(OTR) as lower as 10^{-6} g/(m²·d) and 10^{-5} cm³/(m²·d) respectively[2]. For this reason t he low melting point alloy(LMPA) is applied in the OLED encapsulation. The multi-barrier structure of LMPA and epoxy provides excellent hermeticity for the encapsulation of OLED. However, it demands m ore research on the heating process of the LMPA to protect the OLED device from the thermal damage. We introduce a new way to heat the LMPA and epoxy mixture locally. The induction heating has the c haracteristics such as non-contact, time saving and selective heating. In this case, we can proceed the se

aling in a short time without contacting or heating the OLED device. We manufacture the high frequency y AC power supply depending on the ZVC-circuit, whose frequency can reach 250 kHz. We measure the e sealing temperatures of the LMPA barriers and the OLED device area. It shows that the LMPA melts in a short time and the OLED device's temperature is far behind the limited temperature. As a result, the induction heating is convenient, fast and safe heating method and it is a ideal for the OLED sealing with LMPA.

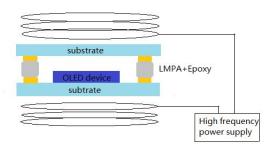
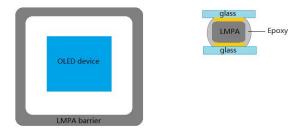
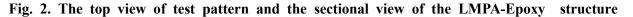




Fig. 1. Induction heating fabrication

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Minis try of Education. (2014-0155)

References

- 1. Saini GS, Hopper DG. Approach of organic light-emitting displays (OLED) to technology status, Proce edings of SPIE 3363, Cockpit Displays V: Displays for Defense Applications, 1998: 288-298.
- 2. Amberg-Schwab S, Weber U, Burger A, et. Development of passive and active barrier coatings on the basis of inorganic–organic polymers. Monatshefte für Chemie/Chemical Monthly, 2006, 137(5): 657-666.