Fluorene Derivatives Containing Electron-Withdrawing Heteroaromatics for Blue OLED

 Young Seok Kim¹, Dong Young Kim¹, Ho Won Lee², Song Eun Lee², Young Kwan Kim² and Seung Soo Yoon¹
¹ Dept. of Chemistry, Sungkyunkwan University, Suwon, Korea Tel.:82-31-290-7071, E-mail: <u>ssyoon@skku.edu</u>
² Dept. of Information Display, Hongik University, Seoul, Korea

Tel.:82-2-3142-3750, E-mail: kimys@hongik.ac.kr

Organic light-emitting diodes (OLEDs) has attracted attentions as the next generation display since the pioneeing work done by Tang and co-workers.¹ To achieve full-color display, development of blue emitter is important due to the lower efficiencies than red and green emitters.² In this work, we synthesized a series of blue fluorescent materials (1-3) based of fluorene derivatives containing electron-withdrawing heteroaromatics.³

Figure 1. Molecular Structures of Blue emitters 1-3.

Fig. 2. UV-vis absorption spectra (no symbol), PL spectra in dichloromethane (closed symbol), and in thin films (opened symbol) of blue emitters 1–3.

Compounds 1-3 showed the blue emissions both in solution and solid states under the photo-excitation conditions, as shown in Figure 2. OLED devices using these materials were fabricated in the following sequence; indium tin oxide (ITO) (180 nm) / N,N'-diphenyl-N,N'-(1-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (20 nm) / emiting materials (30 nm) / bathophenanthroline (Bphen) (30 nm) / lithium quinolate (Liq) (2 nm) / Al (100 nm). All devices showed the blue emissions. In particular, a device using compound 2 exhibits good EL properties with luminous efficiency and power efficiency of 0.98 cd/A and 0.51 lm/W, at 20 mA/cm² respectively. The CIE coordinates of this device was (0.18, 0.24) at 6.0 V.

Acknowledgment

This research was supported by Samsung Display and Basic Science Research Program through the NRF funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2A10008105).

References

- 1. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
- 2. S. Zhuang, R. Shangguan, H. Huang, G. Tu, L, Wang, X. Zhu, Dyes Pigm., 101, 93 (2014)
- 3. H. S. Jang, K. H. Lee, S. J. Lee, Y. K. Kim, S. S. Yoon, Mol. Cryst. Liq. Cryst., 563, 173 (2012).