Light Adaptable Display for Future Advertising Service

Chun-Won Byun¹, Jong-Heon Yang¹, Jae-Eun Pi¹, Hyunkoo Lee¹, GiHeon Kim¹, Byoung-Hwa Kwon¹, Seong Mok Cho¹, Jeong-Ik Lee¹, Yong-Hea Kim¹, Kyoung Ik Cho¹, Sung Haeng Cho¹, Seung-Woo Lee² and Chi-Sun Hwang¹

¹Smart I/O Platform Research Department, ETRI, Daejeon, 305-700, Korea

Tel.:82-42-860-1417, E-mail: <u>cwbyun@etri.re.kr</u>

²The Dept. of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701, Korea

We have proposed and demonstrated a new structure of a light adaptable display (LAD) for future advertising service with minimum power consumption. A organic light emitting diode with colour reflection (coloured OLED) has been applied for reflective and emissive mode device and a guest host liquid crystal device (GH-LC) has been adopted for a light shutter device. The current efficiency and reflectance of the colored OLED were 35.15 cd/A at 457 cd/m² luminance and 63% for yellow color, respectively. The measured contrast ratio of GH-LC was 15.5 :1 at the pixel area. Transparent oxide thin film transistors have been used for back-plane and its average mobility was 9.08 cm²/V s with 0.5 standard-deviation, respectively. Through the optimization of the fabrication process and the structures of each device, we have successfully demonstrated the LAD adaptively operating according to environmental illuminance from dark to 10,000 nit. Moreover, we proposed the new driving methode of LAD for minimizing the power consumption. To develop the driving scheme, we measured the illuminance according to time and location, and deduce the appropriate timing of mode conversion and the optimum lumance of LAD for securing a visibility, based on the measured data.

Fig. 1. The proposed structure of light adaptable display

(a) Emissive mode (b) Reflective mode (@ 200 nit) (@ 10,000 nit) Fig. 2. Operation image of light adaptable display

Table 1. Specifications of light adaptable display

Item	Sp ec.	Item		Sp ec.
Diagonal Size	3.5"	Emissive Mode	Device	Coloured OLED
Resolution	QVGA(mono)		Pixe1	2TFT 1CAP
Backplane	Oxide TFT	Reflective Mode	Device	GH-LCD
Substrate	Glass		Pixe1	1TFT 1CAP

Fig. 3. Driving scheme of light adaptable display

Acknowledgment

This work was supported by the ICT R&D program of MSIP/IITP[10041416, The core technology of light and space adaptable energy-saving I/O platform for future advertising service].

References

- 1. Tien-Lung Chiu, et. al., "Colored reflective organic light-emitting device without bias", Organic Electronics, 15, 2014, p.785-791
- 2. Yi-Hong Chen, et. al., "Microcavity-Embedded, Colour-Tuneable, Transparent Organic Solar Cells", Advanced Materials, 2014, 26, p.1129-1134
- 3. Chun-Ta Wang, et. al., "Photo-Controllable Multi-Stable Liquid Crystal Optical Switch", SID 2014 digest, Volume 45, p. 1457-1459
- 4. Himchan Oh, et.al., "Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor", App. Phys. Lett. 97, 183502