Characterization and Optimization of Plasma-Enhanced Chemical Vapor Deposited SiO₂ Film as a Hydrogen Diffusion Barrier in Metal Oxide Thin-Film Transistors

Sung Haeng Cho¹, Hee-Ok Kim¹, Oh-Sang Kwon¹, Eun-Sook Park¹, Jong-Heon Yang¹, Chi-Sun Hwang¹,

and Sang-Hee Ko Park²

¹Smart I/O Control Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350, Korea

Tel.:82-42-860-6428, E-mail: helloshcho@etri.re.kr

²Dept. of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST),

291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea.

(2 line spacing)

It is well-known that the hydrogen is acting as a shallow donor in metal oxide semiconductors such as ZnO^1 or InGaZnO and actually hydrogen plasma treatment², hydrogen diffusion³ from PECVD SiN_x film or hydrogen ion implantation⁴ into the metal oxide are sometimes utilized to lower the active resistance in the junction area for the source-drain metallization, especially in the self-align process. SiN_x film is a good barrier against alkali ion migration or water permeation so that it can be used as a passivation film to avoid environmental effects and increase the shelf life of the products. But, PECVD SiNx film using SiH₄ and NH₃ gas precursor usually contain about 20 at. % of hydrogen⁵. Therefore we should use good hydrogen diffusion barrier in order to use SiNx film as a passivation layer of metal oxide TFT. In this study, we optimized the process parameters of PECVD SiO₂ film to use it as a diffusion barrier of hydrogen coming from upper SiNx 200 nm. As shown in Fig. 1, we find that the SiO₂ 50 nm deposited at high pressure exhibits good barrier performance even at 350 °C annealing for 2hrs without making IGZO TFT conductive, while SiO₂ 50 film deposited at low pressure permits some hydrogen to enter into the IGZO from SiNx so that the V_{th} of IGZO TFT becomes negative or the switching behavior disappears at the current gate bias range.

Acknowledgment

This work was supported by IT R&D program of MKE/KEIT (Grant No. 10041837, Utilizing Technology Development for Oxide Thin-Film Transistor Sputtering Deposition Equipment in Width 1500 mm Flexible Substrates).

References

- 1. C. G. Van de Walle, and J. Neugebauer, *Nature*, 423 (626) (2003).
- 2. B. D. Ahn, H. S. Shin, H. J. Kim, J. -S. Park, and J. K. Jeong, Appl. Phys. Lett. 93, 203506 (2008).
- 3. A. Sato, K. Abe, R. Hayashi, H. Kumoni, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, *Appl. Phys. Lett.* 94, 133502 (2009)
- 4. T. Kamiya, K. Nomura, and H. Hosono, J. Display Technol. 5, 273 (2009)
- 5. Y. Kuo, (ed.), Thin Film Transistors: Materials and Processes, Kluwer Academic Publishers, Vol. 1, p. 42 (2004).