Sangsik Park et al.

Understanding 3-Dimensional Conduction Channel in Polymer Transistors from Temperature-Dependent Structure/Transport Studies

Sangsik Park¹, Han Wool Park¹, Do Hyung Park¹, Kwang Seok Ahn², Hyun Ho Choi⁴, Jianguo Mei⁶, Kilwon Cho⁴, Zhenan Bao⁵, Dong Ryeol Lee^{2*}, Moon Sung Kang^{3*}, Do Hwan Kim^{1*}

¹Dept. of Organic Materials and Fiber Engineering, ² Dept. of Physics, ³ Dept. of Chemical Engineering Soongsil University, Seoul 156-743, Korea

⁴Dept. of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea ⁵Dept. of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States ⁶Dept. of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

Tel.:82-02-820-0995, E-mail: dohwan@ssu.ac.kr

Understanding of thermally activated charge transport in polymer semiconductor thin-films is absolutely required because of its critical role in performances of the devices for flexible and stretchable electronics. Herein, we describe the first 3-dimensional charge conduction and molecular scale investigation about its origin in polymer semiconductors via comparative analysis using the isoindigo-based polymers with a siloxane-terminated side-chain (**PII2T-Si**) and a branched alkyl-terminated side-chain (**PII2T-Ref**). Interestingly, for **PII2T-Si** thin-film with a *bimodal* molecular orientation, unlike **PII2T-Ref** with a *unimodal* fashion, the distinct transition of the relevant crystallographic parameters including the π -stacking distance and the coherence length of the lateral crystallites was observed at different temperature regimes, thereby strongly mediating 3-dimensional charge conduction into the channel. We believe that our findings will provide rational design rule to guide next generation polymer semiconductors for high-performance flexible organic electronics.

This work was supported by the Center for Advanced Soft-Electronics under the Global Frontier Project (CASE-2014M3A6A5060932) and the Basic Science Research Program (2014R1A1A1005933) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning.

References

1. A. Sharma et al., *Physical Review B*, 85(23), 235302(2012).

2. J. Mei et al., J. Am. Chem. Soc., 133(50), 20130(2011).