High performance organic light-emitting devices based on light-emitting polymers and ionic liquids

Tomo Sakanoue¹ and Taishi Takenobu¹

¹Dept. of Appl. Phys., Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 121-791, Japan

Tel.:81-3-5286-2981, E-mail: <u>sakanoue@aoni.waseda.jp</u>

Organic light-emitting diodes (OLEDs) have successfully been applied to small-size displays and they are now expected for a much wider application. A crucial challenge for OLEDs is fabrication of high-performance devices with low-cost energy-saving processes. Another big challenge is a demonstration of electrically-pumped organic lasers. In order to challenge these issues, we are studying a potential use of light-emitting electrochemical cells (LECs) by using their flexibility of device designing.

LECs are the light-emitting devices whose active layers are composed of single layer blends of light-emitting polymers and electrolytes. When a voltage is applied to the active layer, p- and n-type electrochemical doping occur simultaneously and form highly conducting light-emitting *p-i-n* junction, which enables efficient emission with low voltage application. In this work, we adopted ionic liquids for the electrolyte of LECs. The newly designed ionic liquid dissolved light-emitting polymer, which gave a smooth and uniform active layer without phase separation, enabled us to fabricate a high performance blue-emitting LECs that shows lower driving voltage and higher efficiency than an OLED using the same polymers (Fig.1a).

For laser application, the highly-doped light-emitting *p-i-n* junction in LECs is attractive for high current injection, which is necessary for achieving high exciton density. We adopted a planar LEC structure for minimizing the optical losses by metallic electrodes. At room temperature, the device started to show the line-shaped emission in between two electrodes at 2.5 V, which is close to the bandgap of light-emitting polymer (F8T2, 2.4 eV), indicating a very efficient charge injection and transport was achieved [2] (Fig.1b). A pulse-driving technique achieved significantly high current density over 1,000 A cm⁻². Furthermore, small efficiency roll-off characteristics indicated our LEC is promising for the platform device for demonstrating organic semiconductor lasers.

Fig. 1. (a) Current density-voltage-luminance characteristics of blue LEC and OLED using the same polymer. (b) Microscope image of light emission in planar LEC. The gap between two Au contacts is 10 μm.

Acknowledgment

We would like to thank Nippon Chemical Industrial Co. for supplying ionic liquids. This work was supported by JSPS KAKENHI Grant Number 26706012.

References

- 1. Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 269, 1085 (1995).
- 2. T. Sakanoue, K. Sawabe, Y. Yomogida, T. Taishi, S. Seki and S. Ono, Appl. Phys. Lett. 100, 263301 (2012).