Electrical properties of MoS_{2} TFTs with different layer thickness

Ji Heon Kim, Tae Ho Kim, Na Liu, Jun Ho Ye, and Cheol Jin Lee*
School of Electrical Engineering, Korea University, Seoul 136-713, Korea
Tel.:82-2-3290-3216, E-mail: cjlee@korea.ac.kr

Molybdenum disulfide $\left(\mathrm{MoS}_{2}\right)$ which is one of dichalcogenide materials, indicates semiconducting with a bandgap of $1.2 \sim 1.8 \mathrm{eV}$ and it has unique electrical properties. These materials also apporopriate for flexible and transparent electronics and optical devices. Because of this reason, recently, MoS_{2} was used for channel materials of TFTs.
In this paper, we fabricated the thin-film transistors with MoS_{2} as a channel material on a $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate. MoS_{2} layers were exfoliated by mechanical exfoliation method, and transferred onto $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate. After separating several different thickness of MoS_{2}, the thickness and numbers of layer of MoS_{2} were checked by Atomic Force Microscopy(AFM), Raman spectroscopy and Photoluminescence(PL) measurement.
Thin-film transistors with different number of MoS_{2} layer(1-layer, 3-layer, 6-layer, 10-layer) as a channel region were fabricated by photolithography using electron-beam evaporator(E-Beam evaporator), and we measured their electrical properties. In conclusion, the highest electron mobility was obtained at 6 -layered MoS_{2} TFT, and threshold voltages were decreased as thickness of MoS_{2} is higher.

Fig. 1. Transfer characteristics of MoS_{2} TFTs at $\mathrm{V}_{\mathrm{ds}}=\mathbf{0 . 4} \mathrm{V}$

References

1. Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nature NT, vol.7, p.699(2012).
2. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi and K. Kim, Nature commuications, vol.3, p.1(2012).
3. B.Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature NT, vol.6, p.147(2011).
4. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano, Vol.4, p.2695(2010).
