Highly Stable Hysteresis-Free Molybdenum Disulfide Field-Effect Transistors

Jeongkyun Roh¹, In-Tak Cho¹, Hyeonwoo Shin¹, Byung Hee Hong³, Jong-Ho Lee¹, Sung Hun Jin²* and Changhee Lee¹*

¹Dept. of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

Tel.:82-2-880-9559, E-mail: chlee7@snu.ac.kr

²Dept. of Electronic Engineering, Incheon National University, Incheon 406-772, Korea Tel.:82-32-835-8865, E-mail: shjin@incheon.ac.kr

³ Dept. of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

Molybdenum disulfide (MoS₂) has been intensively studied as a great candidate for next-generation nano electronic devices due to its promising n-type semiconducting properties with a finite bandgap.^{1,2} One of the main issues of MoS₂ FETs is poor electrical and environmental stability. The instability of MoS₂ FETs mainly result from the charge trapping on the MoS₂ surface which is induced by the organic residues, adsorbed H₂O and O₂ molecules.^{3,4} Due to the instability caused by extrinsic and environmental effect, revealing intrinsic properties of the MoS₂ are still limited.

In this study, we demonstrated highly stable hysteresis-free MoS_2 FETs by annealing process and sequential polymer passivation. The fabricated MoS_2 FETs showed negligible hysteresis even after 100 days stored in ambient air remaining good electron mobility of ~20 cm²/Vs, good on/off ratio larger than 10⁶, and good subthreshold swing of ~200 mV/dec. This dramatic improvement on the stability was attributed to the removal of existing charge trapping states by annealing process and prevention of adsorption of H₂O and O₂ molecules to the MoS₂ surface by polymer passivation.

Fig. 1. (a) A schematic diagram for MoS_2 FETs with passivation layer. (b) Transfer characteristics for multilayer MoS_2 FETs with passivation layer in the linear regime where V_{DS} = 100 mV.

Acknowledgment

This work was supported by the Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy (No. 20124010203170).

References

- 1. R. Ganatra and Q. Zhang, ACS Nano 8(5), 4074 (2014).
- 2. D. Lembke, S. Bertolazzi, and A. Kis, Acc. Chem. Res. 48(1), 100 (2015).

3. D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6(6), 5635 (2012).

 K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee, ACS Nano 7(9), 7751 (2013).