Interface Properties of Multilayer MoS₂ Thin-Film Transistors

Woong Choi

School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea

Tel.:82-2-910-4229, E-mail: woongchoi@kookmin.ac.kr

There is a great interest in transition metal dichalcogenides (TMDs) such as MoS_2 because of their interesting electronic and optical properties.¹ Single or multilayer MoS₂ exhibits intriguing characteristics: relatively large bandgap (1.2 - 1.9 eV), high mobility at room temperature (up to ~100 cm²V⁻¹s⁻¹), low subthreshold swing (SS ~70 mV decade⁻¹), and an absence of dangling bonds.²⁻⁴ However, one of the challenges to realize high performance MoS₂ thin-film transistors (TFTs) is the detailed understanding and control of the interfaces of TMDs with contacts and dielectrics. Without the deposition of high-quality dielectrics on TMDs and the formation of low-resistivity metal-MoS₂ junctions, any attempts to improve transistor performance can be fundamentally hampered.^{5,6} This talk will present a review of our recent studies of multilayer MoS₂ TFTs in this context investigating the selective annealing of Ti/Au metal contacts using picosecond ultra-fast pulsed laser and the variability of electrical properties of Ti contacts. The reduced contact resistance after laser annealing provided significant improvement in transistor performance including higher peak field-effect mobility, increased output resistance, increased self-gain, and decreased subthreshold swing (Fig. 1). Furthermore, current-voltage characteristics from room temperature to 240°C demonstrate the formation of Schottky contacts as well as ohmic contacts at Ti-MoS₂ junctions of MoS₂ TFTs, suggesting that the variability of metal contacts on MoS₂ may originate from the intrinsic variability of defect distribution in naturally-occurring MoS_2 crystals (Fig. 1). These results demonstrate the importance of interface properties of MoS₂ TFTs, providing important implications for the application of high-performance two-dimensional semiconductor TFTs toward flexible electronics.

Fig. 1. Multilayer MoS₂ transistors fabricated on flexible substrates. Inset shows the transfer and output transistor characteristics before and after laser annealing of contacts (left). Field effect mobility of two distinct multilayer MoS₂ transistors, labeled as Samples A and B, as a function of inverse temperature. Inset shows schematic energy band diagrams of Samples A and B at the Ti-MoS₂ junction (right).

References

- 1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol., 7, 699 (2012).
- 2. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li,; J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010).
- 3. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
- 4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011).
- 5. I. Popov, G. Seifert, D. Tomanek, Phys. Rev. Lett. 108, 156802 (2012).
- 6. S. Das, H. Y. Chen, A. V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2013).