Large-area synthesis of MoS₂ thin films by atomic layer deposition

Jung Joon Pyeon^{1),2)}, Cheol Jin Cho^{2),3)}, Soo Hyun Kim¹⁾, Chong-Yun Kang^{1),2)}, Seong Keun Kim²⁾ ¹⁾KU-KIST Graduate school of Converging Science and Technology, Korea Tel.:82-2-958-5559, E-mail: 114342@kist.re.kr

²⁾Center for Electronic Materials, Korea Institute of Science and Technology, Korea

³⁾ Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Korea

 MoS_2 has been received great attention as a potential channel material because of its high mobility and relatively large band-gap. A MoS_2 monolayer which has been extensively studied has been mostly formed by a mechanical exfoliation method. However, the exfoliation method is not suitable for mass-production of MoS_2 layer because the exfoliation method cannot precisely control thickness and form uniform MoS_2 in a large-area. Therefore, the large-area synthesis of MoS_2 thin films is essential for a wide range of applications in the industry. Atomic layer deposition (ALD) is a thin film deposition method based on self-limiting mechanism. ALD can control the film thickness at an atomic scale and form very uniform and conformal thin films on the large-area.

We deposited MoS₂ thin films on SiO₂ substrates by ALD using Mo(CO)₆ as a Mo source and H₂S as a S source. The self-saturation behavior was confirmed and the growth per cycle is 0.24 Å/cycle at 160 °C. The temperature window of the ALD of MoS₂ films was observed in the range from 160 to 180 °C. The growth per cycle abruptly increased above 180 °C. Although the XRD spectra of the as-grown MoS₂ films show no crystalline peak, the Raman spectra clearly show E_{2g} and A_{1g} peaks of MoS₂ even at < 1 nm-thick MoS₂. (Fig. 1). It was also verified from the XPS analysis that the as-grown films have Mo-S chemical bindings. After annealing at 500 °C under N₂ atmosphere, the crystallinity of the MoS₂ films was improved, as evidenced by the XRD analysis. We examined the initial growth behavior of MoS₂ films to reduce the film thickness down to few MoS₂ layers. The details on the growth behavior and the properties of the MoS₂ films will be presented.

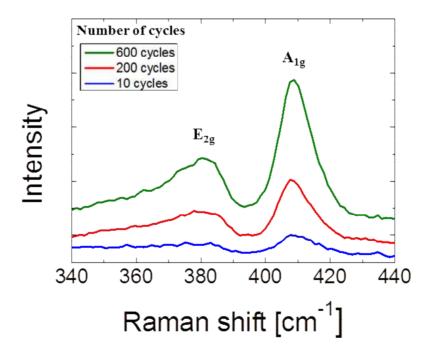


Figure 1. Raman spectra of as-grown MoS₂ films by ALD