High performance moisture barrier comprised of self-aligned organicinorganic hybrid layer and ALD Al₂O₃ for thin-film encapsulation of OLEDs

Dong-Won Choi¹, Eun Ho Song², Youngsoo Lee¹, Byeong Kwon Ju^{2*} and Jin-Seong Park^{1*} ¹Division of Materials Science and Engineering, Hanyang University, Seoul, 133-791 Korea ²Display and Nanosystem Laboratory, College of Engineering, Korea University, 5-1, Anam-Dong,Seongbuk-Gu, Seoul 136-713, South Korea

Tel.:82-2-2220-4800, *E-mail*: <u>jsparklime@hanyang.ac.kr</u> *Tel.*:82-2-3290-3671, *E-mail*: <u>bkju@korea.ac.kr</u> *corresponding autrhos contributed this work equally.

Flexible Organic Light Emitting Diodes (OLEDs) have been recently considered to be the most promising device for next-generation displays. One of main issues for flexible OLEDs is reliable and/or robust Thin Film Encapsulation (TFE) technique such as materials, processes, and structures. Over the past few years, many researchers have studied TFE using Atomic Layer Deposition (ALD) Al_2O_3 due to its superior barrier properties. However, although the ALD Al_2O_3 film has an excellent barrier property, a single layer Al_2O_3 is not enough for the basic requirements of water vapor transmittance rate (WVTR) and mechanical flexibility. In order to improve gas barrier properties and flexibility, several previous studies of organic/inroganic hybrid structure for TFE have been investigated with various techniques (ALD, CVD, Sol-Gel, and PVD) since Vitex organic/inorganic structure was announced in 2003. Even though organic/inorganic structure is effective for improving gas barrier properties and flexibility, it has never achieved for ultimate requirements (Bending radius < 1mm and WVTR <10⁻⁶g/m²day).

In this study, we investigated a multi-barrier for encapsulation of OLEDs using self-aligned organic-inorganic hybrid layer by solution process and Al_2O_3 by ALD, which would suggest a possible approach to achieve highly flexible and high diffusion barrier property. As a result, the suggested hybird layer exhibited better WVTR of 1.08 $\times 10^{-4}$ g/m²day at 85°C/85% R.H than that (2.69 x 10^{-4} g/m²day)of single Al_2O_3 . This presentation will be discussed with each film property, using Ca-test, contact angle measurement, AFM, SEM, and TEM.

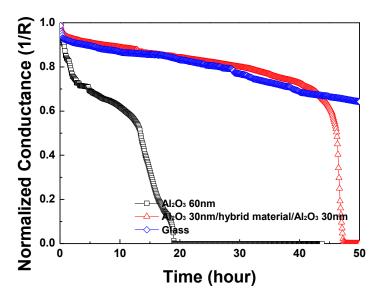


Fig. 1. Representative Ca-test results of single ALD Al₂O₃, Al₂O₃/hybrid materials/Al₂O₃ and Glass

Acknoledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2013R1A1A2058660).