How we can control weakly-bonded oxygen introduced by sputtering deposition for amorphous In-Ga-Zn-O thin-film transistor

Keisuke Ide¹, Mutsumi Kimura², Hidenori Hiramatsu^{1,3}, Hideya Kumomi³, Hosono Hideo^{1,3} and Toshio Kamiya^{1,3} ¹MSL, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan *Tel.:81-45-924-5855, E-mail: keisuke@lucid.msl.titech.ac.jp* ²Department of Electronics and Informatics, Ryukoku University, Otsu, 520-2194, Japan

³MCES, Tokyo Institute of Technology, Yokohama, 226-8503, Japan

Amorphous oxide semiconductors (AOSs) have much preferable properties for developing flexible displays and devices compared to conventional hydrogenated amorphous silicon.¹ We also reported that high temperature (\geq 300°C) annealing in ozone (O₃) atomosphere incorporates weakly-bonded oxygen to amorphous In-Ga-Zn-O (a-IGZO) films and causes large hysteresis on the operation of thin-film transistor (TFT) arising from bistable trap states.² Similar phenomena are observed also by conventional sputtering if very high oxygen partial pressures are employed. There are some reports that suggest the instability for illumination stress³ and bias stresss⁴ come from interstital oxygen/excess oxygen, but their correlation has not yet been demonstrated.

Here, we report that bistable trap states originating from weakly bonded oxygens are formed in unannealed a-IGZO channels deposited at room temperature (RT) if the oxygen flow ratio (R_{02}) during deposition is larger than the optimal value (~3% for our standard sputtering). Bottom-gate, top-contact a-IGZO TFTs were fabricated on SiO₂/c-Si substrates without a back-channel passivation layer. The a-IGZO channel was deposited by radio-frequency magnetron sputtering at varied R_{02} and subjected to O₂ annealing. Excess/weakly-bonded oxygens were detected by thermal desorption spectrum (TDS) measurements.

It was found that the unannealed TFT deposited at, for example, $R_{O2} = 10\%$ (Fig. 1 (a)) showed a small turnon voltage (V_{on}) in the virgin curve (black line) while changed to large V_{on} in the 2nd and 3rd measurements (red and blue lines, respectively). Furthermore, it is seen that difference between the initial and 2nd V_{on} (ΔV_{on}) decreases with increasing annealing temperature (T_{ann}). Figure 2 shows TDS signal for various T_{ann} . As a result, the total O₂ desorption amount up to 400°C decreases with increasing T_{ann} from 4.8×10^{18} cm⁻³ for the unannealed film to 3.8×10^{18} cm⁻³ for the 200°C-annealed film. More details including the relationship among R_{O2} , ΔV_{on} , hystresis ΔV_{th} , O₂ desorption, and subgap states will be discussed at the conference.

Fig. 1. Cyclic measurements of transfer curve of a-IGZO TFT deposited at $R_{02} = 10\%$.

Fig. 2. TDS for IGZO films deposited in $R_{O2} = 10\%$ for various T_{ann} .

References

- 1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
- 2. K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hsono, Appl. Phys. Lett. 99, 093507 (2011).
- 3. J. Robertson and Y. Guo, Appl. Phys. Lett. 104, 162102 (2014).
- 4. Y.-S. Lee, K.-H. Yu, D.-H. Shim, H.-S. Kong, L. Bie and J. Kanicki, Jpn. J. Appl. Phys. 53, 121101 (2014).