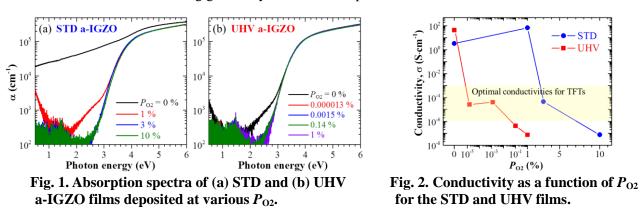
Importance of excess oxygen on growth and carrier transport of amorphous In-Ga-Zn-O with impurity hydrogen

Haochun Tang¹, Kyohei Ishikawa¹, Keisuke Ide¹, Hidenori Hiramatsu^{1,2}, Shigenori Ueda⁴, Naoki Ohashi^{2,4}, Hideya Kumomi², Hideo Hosono^{1,2,3} and Toshio Kamiya^{1,2}

¹Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midoru-ku, Yokohama 226-8503, Japan

Tel.:81-45-924-5855, E-mail: <u>hctang@lucid.msl.titech.ac.jp</u>

²Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midoru-ku, Yokohama 226-8503, Japan


³Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midoru-ku, Yokohama 226-8503,

Japan

⁴National Institute of Material Science, 1-2-1 Sengen, Tsukuba-city Ibaraki 305-0047, Japan

Amorphous oxide semiconductors represented by amorphous In-Ga-Zn-O (a-IGZO) are promising materials for thin-film transistors (TFTs) due to their large field-effect mobilities (>10 cm²(V·s)⁻¹) and small subthreshold voltage swings (<0.2 V·decade⁻¹).¹ It has been reported a-IGZO films contain impurity hydrogens and its concentration is varied by the base pressure (P_{base}) of a deposition chamber, which leads to different film structures, densities, and electrical properties^{2.3} and has clarified some hydrogen species work to passivate defects in a-IGZO.⁴ Besides, the roles of hydrogen on subgap states are not understood well. In this work, we fabricated a-IGZO films using two sputtering systems with different P_{base} (denoted STD and UHV sputtering for $P_{base} \sim 10^{-4}$ Pa and $\sim 10^{-7}$ Pa, respectively) and extensively investigated the hydrogen effects by optical absorption coefficient (α), hard X-ray photoemission spectroscopy (HAXPES), Hall effect measurement, etc.

Figure 1 shows the α spectra of STD and UHV a-IGZO films deposited with various oxygen pressures (P_{O2}) . It is seen that the STD film deposited without O₂ ($P_{O2} = 0$ %) has a long tail subgap absorption extending from the optical band gap ($E_g \sim 3.0 \text{ eV}$) to 0.5 eV, while the UHV films do not show such high-density defect states even though deposited without O₂. The STD film deposited at $P_{O2} = 3$ %, which is the optimal condition for TFTs, shows the minimum subgap absorption; while, a similar α spectrum with the small subgap absorption is obtained at $P_{O2} = 1$ % for the UHV a-IGZO. This result quantitatively supports the idea that ~2 % of excess oxygen is required to compensate subgap defects and donors induced by the impurity hydrogens. Figure 2 shows the conductivity as a function of P_{O2} for STD and UHV films, further supporting this conclusion. Further, HAXPES spectra clarified that the long tail subgap absorption in the $P_{O2} = 0$ % STD film comes from segregation of metallic In. More details including growth dynamics will be presented at the conference.

- 1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
- 2. T. Miyase, K, Watanabe, I. Sakaguchi, N. Ohashi, K. Domen, K. Nomura, H. Hiramatsu, H. Kumomi, Hideo Hosono and T. Kamiya, *ECS J Solid State Sc*, **3** Q3085 (2014).
- 3. T. Orui, J. Herms, Y. Hanyu, S. Ueda, K. Watanabe, I. Sakaguchi, N. Ohashi, H. Hiramatsu, H. Kumomi, H. Hosono and K. Kamiya, *J. Display Technol.* (2014) published online.
- 4. Y. Hanyu, K. Domen, K. Nomura, H. Hiramatsu, H. Kumomi, H. Hosono and T. Kamiya, *Appl. Phys. Lett.* **103**, 202114 (2013).